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Abstract
This paper addresses the robust stability analysis of some
bilateral teleoperation control scheme subject to various
constant and/or time-varying delays in the communication
channel.
The stability conditions are derived usingfrequency-
domain techniques. More specifically, in the case of
constant delays, the stability regions of the systems’ pa-
rameters are completely characterized.
Finally, the analysis is extended to the case of time-varying
uncertain delay, and we derive sufficient (closed-loop) sta-
bility conditions.

1 Introduction
A basicteleoperation systemconsists of aslave deviceand
a master device. The master isdirectly manipulatedby a
human operator, and the slave is designed to track the mas-
ter closely. The main purpose of such a master-slave confi-
guration is to manipulate the environment (or space) gene-
rally inaccessible to human operators, such as hazardous
environment. Such systems are often known as abilateral
teleoperatorsystems.

Time delay plays an important role in the teleoperation sys-
tems. Due to the physical distance between the master and
slave, as well as the signal processing, the communications
involve significant delays. Another source of delay is the
reaction of the human operators. In this chapter, we will
discuss the effect of the communication delays (constant or
time-varying) on the closed-loop stability of such systems.

In this context, we are interested in characterizing the way
that delays change performances in communication chan-
nels connecting the master and slave sites (bilateral teleo-
peration). It is well known that thepassivityof the chan-
nel (see, e.g., [1, 6, 17, 18, 24]) may be used to guarantee
desirable characteristics for the closed-loop schemes (see
also [10]). The techniques proposed to perform such an
analysis use the scattering transformation [1] or the wave
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variable transformation [17, 18], if the delays are assumed
constant. The case of time-varying or distributed delays
was considered in [11, 19] using the wave transformation
approach and in [14] but under some assumptions on the
delay variation.

Consider the following equations widely used to describe
the dynamics of teleoperators [1,11].

{
Mmẍm(t) +Bmẋm(t) = Fh(t)− Fm(t)
Msẍs(t) +Bsẋs(t) = Fs(t)− (1 + αf )Zeẋs(t),

(1)
where ẋ,M,B are the velocities, inertias, and damping
coefficients, respectively. The subscriptsm ands denote
the corresponding quantity is of the master and the slave,
respectively. The inputFh denotes the operator force or
torque, andZe is the environmental impedance. The quan-
tity Fs is the force or torque applied to the slave transmitted
from the master, andFm is the force on the master fed back
from the slave.

For an explicit stability analysis, see [6] for various
frequency-domain techniques (see also [12]), and [2] for a
Lyapunov functional approach. For delay-independent sta-
bility, the approach proposed in this paper is simpler than
the one proposed in [6], and the derived conditions arene-
cessary and sufficient, and in ananalyticalform.

For delay-independent stability, the main idea is to use a
frequency-domain method based on the Tsypkin’s crite-
rion [5, 12]. For frequency-sweeping tests applied to va-
rious control systems, see, for instance, [3]. Various dis-
cussions and comments related to such techniques can be
found in [12]. Such an approach was used in [20] for
the closed-loop stability analysis of a simple teleoperation
control scheme, where delay-independent/delay-dependent
stability conditions were derived under the assumption of
symmetric delays in the channels (τ1 = τ2 = τ ). The ap-
proach considered here follows the lines of the approach
mentioned above, but it includes also the extension to the
case when the delay is assumed to be time-varying.

As in [11], consider the control law described by the follo-
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wing equations

Fs(t) = Ks

∫ t

0

(ẋsd(t)− ẋs(t))dθ

+Bs2(ẋsd(t)− ẋs(t)), (2)

Fm(t) = Km

∫ t

0

(ẋm(t)− ẋmd(t))dθ

+Bm2(ẋm(t)− ẋmd(t)). (3)

Due to communication delays, the most recently available
information is used instead, that is, we choose,

ẋsd(t) = ẋm(t− τ1), (4)

ẋmd(t) = ẋs(t− τ2), (5)

whereτ1 andτ2 are the delays in the forward and feedback
communication channels, respectively.
As mentioned above, we are interested in first findingana-
lytical conditionson the system’s parameters such that the
closed-loop system is asymptotically stable for arbitrary
communication delays. For those parameters which do not
satisfy such delay-independent stability conditions, we will
find the correspondingdelay intervalssuch that the closed-
loop system is stable. Furthermore, we are also interested
in finding conditions for which there is only one delay in-
terval, and computing the correspondingoptimal bounds.
A similar problem, but only with constant and symmetric
time-delays (τ1, τ2), was considered in [20].
In the case of time-varying delay uncertainty, the idea is
to construct an appropriate fictitious transfer function such
that the stability of the original closed-loop scheme is re-
duced to some H∞-norm property of the corresponding
transfer. To the best of the authors’ knowledge, such an
approach was not considered in the bilateral teleoperation
case.
The paper is organized as follows: Section 2 is devoted
to the stability analysis of the closed-loop system using
frequency-domain techniques. Constraints on the control-
ler’s gainKs and ‘damping’Bs1 will be given such that the
closed-loop scheme is asymptotically stableindependent
of the communication delays. Next, thedelay-dependent
stability of the closed-loop system will be considered. Sec-
tion 3 discusses the case of time-varying delays. Some
concluding remarks end the paper. The notations are stan-
dard.

2 Stability Analysis for Constant De-
lays

2.1 Problem setup
Carrying out the Laplace transform (under zero initial
conditions) of the closed-loop system, using the velocities
vm(t) = ẋm(t) andvs(t) = ẋs(t) as the system variables,
we obtain{

MmsVm(s) +BmVm(s) = Fh(s)− Fm(s),
MssVs(s) +BsVs(s) = Fs(s)− (1 + αf )ZeVs(s),

(6)

and

Fs(s) =
Ks +Bs2s

s
e−τ1sVm(s)− Ks +Bs2s

s
Vs(s).

(7)

Fm(s) =
Km +Bm2s

s
Vm(s)− Km +Bm2s

s
e−τ2sVs(s).

(8)

Using the control laws (7) and (8) in the second equation
of (6), with the notationBs = Bs + (1 +αf )Ze, it follows
that:

Vs(s) =
Ks +Bs2s

Mss2 + (Bs +Bs2)s+Ks

e−τ1sVm(s), (9)

Let τ = τ1 + τ2, and use the following notations:

Γ1(s) = Bs2s+Ks : slave torque, (10)

Γ2(s) = Mss+Bs : slave, (11)

Γ3(s) = Mms+Bm : master, (12)

Γ4(s) = Bm2s+Km : master torque, (13)

we obtain from the first equation of (6) and (8)

Vm(s)Γ3(s) = Fh(s) +
Γ4(s)
s

(
e−τ2sVs(s)− Vm(s)

)
.

Using (9) in the above, we obtain

Vm(s) ·
(
sΓ3(s) + Γ4(s)

s
− e−τs

Γ4(s)Γ1(s)
s(Γ1(s) + sΓ2(s))

)
= Fh(s) (14)

Therefore, the transfer function fromFh toVm is given by:

H1(s) =
1

(sΓ3(s)+Γ4(s))
s

(
1− e−τsΓ4(s)Γ1(s)

Γ1(s)+sΓ2(s)
1

(sΓ3(s)+Γ4(s))

) .
(15)

Furthermore, based on the form ofVs(s), the transfer func-
tion fromFh to Vs is given by:

H2(s) = H1(s) · Ks +Bs1s

Mss2 + (Bs +Bs1)s+Ks

e−τ1s.

(16)
SinceMs, Bs, Bs1,Ks, αf , Ze are positive real numbers,
H1(s) andH2(s) share the right half plane poles. The-
refore, to study the stability of the closed-loop system, it
is sufficient to study the stability of the transfer function
H1(s). Or, equivalent, one needs only to study the distri-
bution of zeros of the expression:

1− e−τs
Γ4(s)Γ1(s)

Γ1(s) + sΓ2(s)
1

(sΓ3(s) + Γ4(s))
. (17)

We will first study asymptotic stability of the closed-loop
system when it isfree from delays. In this case, the zeros of
the characteristic function (17) becomes those of the third-
order polynomial:

P (s) = sΓ2(s)Γ3(s) + Γ3(s)Γ1(s) + Γ4(s)Γ2(s). (18)



Using the Routh-Hurwitz stability criterion (see, for
example, [8]), it follows that the system free from delays
is asymptotically stable if and only if the following inequa-
lity holds:(

Km

Mm
+
Ks

Ms
+
BmBs2
MmMs

+
Bs(Bm2 +Bm)

MsMm

)
·
(
Bs2 +Bs

Ms
+
Bm2 +Bm

Mm

)
>
KsBm +KmBs

MsMm
. (19)

It is not difficult to show that (19) is always valid for all
positive parameters. Therefore, as expected, if the sys-
tem is free from delay, the controller (2)-(5) guarantees the
asymptotic stabilityof the closed-loop system.

2.2 Delay-independent stability
The next step is to find the conditions under which the sta-
bility in the closed-loop systems is guaranteed forarbitrary
communication delaysτ1 andτ2. First, under a certain pa-
rameter constraint, we will find necessary and sufficient
conditions for stability. Next, we will provide asimplesuf-
ficient condition easy to use in practice.

Theorem 1 Assume the feedback gainsKm andKs,Bm2

andBs2 are positive constants. Then the closed-loop sys-
tem is asymptotically stable for all communication delays
τ1, τ2 if and only if,∀ω > 0 :

| (jω)Γ3(jω) + Γ4(jω) |>
∣∣∣∣ Γ4(jω)Γ1(jω)
Γ1(jω) + jωΓ2(jω)

∣∣∣∣ . (20)

Proof: In view of the form ofH1(s), sincesΓ3(s)+Γ4(s)
is Hurwitz stable, it follows that the stability of the closed-
loop system (1)-(5) is equivalent to the stability of the unit
feedback closed-loop system with the open-loop transfer
function

Ho(s) =
Γ4(s)Γ1(s)

(sΓ3(s) + Γ4(s))(Γ1(s) + sΓ2(s))
e−sτ . (21)

Since(sΓ3(s)+Γ4(s))(Γ1(s)+sΓ2(s)) is Hurwitz stable,
andHo(s) is strictly proper forτ = 0, then we may ap-
ply the Tsypkin’s criterion, and the condition (20) follows
directly.

Note that forω = 0,

|jωΓ3(jω) + Γ4(jω)| =
∣∣∣∣ Γ4(jω)Γ1(jω)
Γ1(jω) + jωΓ2(jω)

∣∣∣∣ = Km

Furthermore, if (20) is verified forω > 0, then the same in-
equality holds forω < 0. The condition (20) in Theorem 1
is a simplefrequency-sweeping testthat can be easily per-
formed if the parameters of the system and the controller
are given. To obtain a even simpler criterion than (20), in-
troduce the notation

γ(Km, Bm2,Ks, Bs2) = sup
ω>0

∣∣∣∣ Γ4(jω)Γ1(jω)
Γ1(jω) + jωΓ2(jω)

∣∣∣∣ ,
(22)

which depends continuously on the controller’s parameters
Km, Bm2,Ks, Bs2 (they are all real and positive). Then,
we have the following natural corollary:

Corollary 1 The closed-loop system is asymptotically
stable for arbitrary communication delaysτ1, τ2 ≥ 0 if the
controller gainsKs,Km and the “damping coefficients”
Bs2, Bm2 are chosen to satisfy

Km <
(Bm +Bm2)2

2Mm
(23)

γ(Ks, Bs2,Km, Bm2) ≤ Km (24)

Proof: The result is a straighforward from Theorem 1: The
condition (23) ensures that| jωΓ3(jω) + Γ4(jω) | is a
strictly increasing function ofω, which impliesKm <|
jωΓ3(jω) + Γ4(jω) | for all ω > 0. Therefore the condi-
tion (20) is implied by (24).

As given in the next Proposition, the condition (24) can be
written out explicitly.

Proposition 1 The closed-loop system is asymptotically
stable for all communication delaysτ1, τ2 ≥ 0, if the
controller’s parameters satisfy:

Ks ≤
MsK

2
m

B2
m2


√√√√1 +

B2
s2B

2
m2

M2
sK2

m

((
1 +

B

Bs2

)2

− 1

)
− 1


(25)

Km ≥
Bs2Bm
Ms

(26)

Km <
(Bm +Bm2)2

2Mm
(27)

Proof: We will show that (25) and (26) is necessary and
sufficient condition for (24), which will be sufficient to
complete the proof. Define

f : [0,∞) 7→ (0,∞)

f(ω2) =
| Γ4(jω) |2 · | Γ1(jω) |2

| Γ1(jω) + jωΓ2(jω) |2
. (28)

Then,f(ω2) is in the form of

f(ω2) = K2
m

aω4 + bω2 + 1
dω4 + eω2 + 1

where the denominator

dω4 + eω2 + 1 > 0 for all ω2 > 0 (29)

Therefore, the equation (23), or equivalently,f(ω2) ≤
K2
m, is equivalent to

aω4 + bω2 + 1 ≤ dω4 + eω2 + 1 for all ω2 > 0

in view of (29). But the above is satisfied if and only if

a ≤ d (30)

b ≤ e (31)



With the specific parameters substituted, (30) reduces to
(26). The condition (31) is a quadratic inequality ofKs,
which is satisfied if and only if (25) is satisfied in view of
the fact thatKs is positive.

Remark 1 (Tuning parameters) Proposition 1 above
gives a very simple way of constructing the controller
(1) such that the closed-loop system is guaranteed to
be asymptotically stable for all communication delays
τ1, τ2 ≥ 0.

2.3 Delay-dependent stability

If (20) is not satisfied for allω > 0, the conditions for
Theorem 1 do not hold, and there must exist delays such
that the system is unstable. Since the system without delays
is asymptotically stable, there always exists one or more
intervals of delay such that the system is asymptotically
stable. We are interested in finding the maximumτ∗ > 0
such that the system is asymptotically stable for allτ ∈
[0, τ∗). This can be carried out by solving the equation

| (jωΓ3(jω) + Γ4(jω)) |2=
∣∣∣∣ Γ4(jω)Γ1(jω)
Γ1(jω) + jωΓ2(jω)

∣∣∣∣2
(32)

This equation can be reduced to a third order polynomial
equation of the variableω2, and formulas are available to
express the solutions explicitly (see, for example, [22]).
Clearly, since (20) is not satisfied for allω ≥ 0, and it is
clearly satisfied for sufficiently largeω, the equation (32)
has at least one real positive solution. Let all the real po-
sitive solutions be denoted asωi, i = 1, 2, ...,m. Clearly,
1 ≤ m ≤ 3. Then, we can conclude:

Theorem 2 (Switch characterizations) If (20) is not sa-
tisfied for allω > 0, let
τ∗ = min

`∈Z
min

1≤i≤m

1

ωi

[
Log

(
Γ4(jω)Γ1(jω)

(jωΓ3(jω) + Γ4(jω))(jωΓ2(jω) + Γ1(jω))

)
+2π`] > 0, (33)

where “Log” denotes the principal value of the logarithm.
Then, the closed-loop system is asymptotically stable for
all τ ∈ [0, τ∗).

Proof: As discussed above, the equation (32) has one to
three real positive solutions. If and only ifω is a real po-
sitive solution, there exists aτ satisfying the characteristic
equation

(sΓ3(s) + Γ4(s))− e−τs
Γ4(s)Γ1(s)

Γ1(s) + sΓ2(s)
= 0

for s = jω, some simple but tedious computations lead to
the smallestτ > 0 in (33). Specific discussions on deciding
the stable delay intervals are very similar to [16].

3 Time-Varying Uncertain Delays
Introduce the vector of state variablesx = [x1, ..., x4]T ,
where

x1(t) =
∫ t

0

vm(θ)dθ, x2(t) = vm(t) (35)

x3(t) =
∫ t

0

vs(θ)dθ, x4(t) = vs(t) (36)

Then, the closed-loop system described by (1) to (5) can be
written as

ẋ(t) = Ax(t)+B1x(t−τ1)+B2x(t−τ2)+B3Fh(t) (37)

where:

A =


0 1 0 0

−Km
Mm

−Bm+Bm2
Mm

0 0

0 0 0 1

0 0 −Ks
Ms

− (Bs+Bs2+(1+αf )Ze)

Ms



B1 =


0 0 0 0
0 0 0 0
0 0 0 0
Ks
Ms

Bs2
Ms

0 0

 , B2 =


0 0 0 0

0 0 Km
Mm

Bm2
Mm

0 0 0 0
0 0 0 0


(39)

andB3 =
[

0 1 0 0
]T

.
In the sequel, we will consider the case that the time-delays
τ1 and τ2 are subject to time-varying uncertainties. Let
δ1(t) andδ2(t) be continuous time-varying bounded func-
tions with bounded derivatives,

0 ≤ δi(t) ≤ εi, δ̇i(t) ≤ ρi, 0 ≤ ρi < 1 i = 1, 2. (40)

With the delay uncertainty, we write the system as follows:

ẋ(t) = Ax(t)+B1x(t− τ1−δ1(t))+B2x(t− τ2−δ2(t))
(41)

We have also omitted the human input termFh since it
does not affect the stability analysis in the state-space form.
Although not considered here, it is also possible to allowδi
to assume both positive and negative values with potential
further reduction of conservatism, see [7]. Equation (41)
can be written as:

ẋ(t) = Ax+B1x(t− τ1) +B2x(t− τ2)

−B1

∫ 0

−δ1(t)

∂

∂θ
x(t− τ1 + θ)dθ

−B2

∫ 0

−δ2(t)

∂

∂θ
x(t− τ2 + θ)dθ (42)

Use (41) for the terms∂∂θx(t−τ1 +θ) and ∂
∂θx(t−τ2 +θ)

in the above equation, (known as the model transformation)
and let

u1(t) = A

∫ 0

−δ1(t)

x(t− τ1 + θ)dθ (43)

u3(t) = A

∫ 0

−δ2(t)

x(t− τ2 + θ)dθ (44)



u2(t) = B2

∫ 0

−δ1(t)

x(t− τ1 + θ− τ2 − δ2(t− τ1 + θ))dθ

(45)

u4(t) = B1

∫ 0

−δ2(t)

x(t− τ2 + θ− τ1 − δ1(t− τ2 + θ))dθ

(46)
SinceB1B1 = B2B2 = 0, we can write (41) as :

ẋ(t) = Ax+B1x(t− τ1) +B2x(t− τ2)−B1u1(t)
−B1u2(t)−B2u3(t)−B2u4(t)

(47)

Assuming zero initial conditions, we will estimate the
gains fromx to ui, i = 1, 2, 3, 4. It is useful to define
νi(η) = η − δi(η), i = 1, 2. Then,

η − εi ≤ νi(η) ≤ η

Also, sincedνi/dη = 1 − δ′i(η) ≥ 1 − ρi > 0, νi is a
strictly increasing function, the inverse functionη = η(νi)
is well defined, and

∂η

∂νi
=

1
1− δ′i(η)

≤ 1
1− ρi

Furthermore, due to the range ofδi, we can easily verify
that

νi ≤ η(νi) ≤ νi + εi

Using Jensen’s Inequality [23] [7], we can show that:∫ t

0

uT4 (ξ)u4(ξ)dξ

≤
∫ t

0

δ2(ξ)[
∫ 0

−δ2(ξ)

(xT (ν1(ξ − τ2 + θ)− τ1)BT1 ·

B1x
T (ν1(ξ − τ2 + θ)− τ1))dθ]dξ (51)

Change integration variable fromθ to µ, with µ = v1(ξ −
τ2 + θ)− τ1. Then, we have∫ 0

−δ2(ξ)

xT (ν1(ξ − τ2 + θ)− τ1)BT1 ·

B1x(ν1(ξ − τ2 + θ)− τ1)dθ

≤
∫ ξ−τ2−τ1

ξ−τ2−ε2−ε1−τ1

1
1− ρ1

xT (µ)BT1 B1x(µ)dµ (52)

Therefore,∫ t

0

uT4 (ξ)u4(ξ)dξ ≤ (ε1 + ε2)ε2

1− ρ1
||B1||2

∫ t

0

xT (µ)x(µ)dµ

Similarly, we can show∫ t

0

uT2 (ξ)u2(ξ)dξ ≤ (ε1 + ε2)ε1

1− ρ2
||B2||2

∫ t

0

xT (µ)x(µ)dµ

With a simpler procedure, we can also show∫ t

0

uT1 (ξ)u1(ξ)dξ ≤ ε2
1||A||2

∫ t

0

xT (µ)x(µ)dµ∫ t

0

uT3 (ξ)u3(ξ)dξ ≤ ε2
2||A||2

∫ t

0

xT (µ)x(µ)dµ

With the above discussion, we can write the system descri-
bed by (47) and (43)-(46) as

ẋ(t) = Ax(t)−B1x(t− τ1)−B2x(t− τ2) + B̂u

yi(t) = cix(t), i = 1, 2, 3, 4 (54)

where

u(t) = [uT1 (t) uT2 (t) uT3 (t) uT4 (t)]T

B̂ = [B1 B1 B2 B2]

and

c1 = ε1||A||, c2 =

√
(ε1 + ε2)ε1

1− ρ2
||B2||, (55)

c3 = ε3||A||, c4 =

√
(ε1 + ε2)ε2

1− ρ1
||B1|| (56)

with feedbackui(t) = ∆iyi(t), 1 ≤ i ≤ 4.
With the definition ofui andci, it can be easily shown that
the gains of the dynamic operator∆i is bounded by1.

Theorem 3 The closed loop system is uniformally asymp-
totically stable for any time-varying delay uncertainty
δi(t), i = 1, 2, 3, 4, satisfiying (40), if there exist scalars
αi, i = 1, 2, 3, 4 such that

||ΛH(jω)Λ−1||∞ <
1

εmax

whereΛ= diag (α1In, .., α4In), and

H(s) =


c1In
c2In
c3In
c4In

 (sI −A+B1e−τ1s +B2e−τ2s)−1B̂

(58)

Proof: Use the small gain theorem, as discussed in Chapter
8 of [7].

4 Concluding Remarks
In this chapter, we have been interested in the closed-loop
stability of some simple bilateral teleoperation scheme in
the hypothesis of the existence of some communication de-
lays. A frequency-domain approach was used to perform
the stability analysis in terms of delays. The main advan-
tage of the derived method lies in its simplicity.
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