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Abstract

Interconnection and damping assignment passivity-based
control is a new controller design methodology devel-
oped for (asymptotic) stabilization of nonlinear systems
that does not rely on, sometimes unnatural and technique–
driven, linearization or decoupling procedures but instead
endows the closed–loop system with a Hamiltonian struc-
ture with a desired energy function—that qualifies as Lya-
punov function for the desired equilibrium. The assignable
energy functions are characterized by a set of partial differ-
ential equations that must be solved to determine the con-
trol law. We prove in this paper that for a class of mechani-
cal systems withunderactuation degree onethe partial dif-
ferential equations can beexplicitly solved. Furthermore,
we introduce a suitable parametrization of assignable en-
ergy functions that provides the designer with a handle to
address transient performance and robustness issues. Fi-
nally, we develop a speed estimator that allows the imple-
mentation ofposition–feedbackcontrollers.

Note The present paper is an abridged version of the orig-
inal work [3] where several examples and all proofs, omit-
ted here, may be found.
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1 Introduction
In [30] we introduced a controller design technique, called
interconnection and damping assignment passivity–based
control (IDA–PBC), that achieves stabilization for under-
actuated mechanical systems invoking the physically mo-
tivated principles ofenergy shapingand damping injec-
tion. IDA–PBC endows the closed–loop system with a
Hamiltonian structure where the kinetic and potential en-
ergy functions have some desirable features, a minimal re-
quirement being to have a minimum at the desired oper-
ating point to ensure its stability. Similar techniques have
been reported for general port–controlled Hamiltonian and
Lagrangian systems in [29, 39] and [31], respectively; see
also [12, 13, 14] for the case of Lagrangian mechanical
systems and [28] which contains an extensive list of refer-
ences on this topic. The success of these methods relies on
the possibility of solving a set of partial differential equa-
tions (PDEs) that identify the energy functions that can be
assigned to the closed–loop. The PDE associated to the ki-
netic energy defines the admissible closed–loop inertia ma-
trices and is nonlinear, while the PDE of assignable poten-
tial energy functions is linear. In [12] the authors identify a
series of conditions on the system and the assignable iner-
tia matrices such that the PDEs can be solved. Also, tech-
niques to solve the PDEs have been reported in [8, 11] and
some geometric aspects of the equations are investigated
in [23]. In [18] it is shown that the kinetic energy PDE
reduces to an ordinary differential equation (ODE) if the
system is of underactuation degree one, that is, if the dif-
ference between the number of degrees of freedom and the
number of control actions is one—see also [9] for a detailed



study of this case for the Controlled Lagrangian Method. In
spite of all these developments the need to solve the PDEs
remains the main stumbling block for a wider applicability
of these methods.
In this paper we are interested in the application of IDA–
PBC to mechanical systems with underactuation degree
one. The main contributions of the paper are:

1. Identification of a class of underactuation degree one
mechanical systems for which the PDEs of IDA–PBC
can beexplicitly solved. Roughly speaking, we as-
sume that the open–loop systems inertia matrix and
the force induced by the potential energy (on the unac-
tuated coordinate) are independent of the unactuated
coordinate.

2. Derivation of conditions to effectively assign a min-
imum to the energy function at the desired operating
point—providing in this way a complete constructive
procedure for stabilization. The conditions are given
in terms of singlealgebraic inequalitythat measures
our ability to influence, through the modification of
the inertia matrix, the unactuated component of the
force induced by potential energy.

3. Development, using the recently introduced method
of Immersion and Invariance [6, 22], of a speed esti-
mator that allows the implementation of the proposed
controllersmeasuring positiononly. To the best of our
knowledge, this is the first position–feedback solu-
tions reported for these systems—at this level of gen-
erality.

4. Last, but not least, the introduction of a suitable
parametrization of assignable energy functions—via
two free functionsand a gain matrix—giving the de-
signer the possibility to address transient performance
and robustness issues. In spite of their great practi-
cal importance these issues are rarely studied in the
literature. Indeed, most of the controllers reported
for this class of systems rely on the rather unnatural,
technique–driven and fragile operations of lineariza-
tion and decoupling. Other existing schemes give very
little freedom to the designer to tune the controller—
basically only the selection of saturation and domina-
tion functions or the adjustment of high–gain injection
or damping.

2 The IDA–PBC method for (simple)
mechanical systems

In this section we briefly review the material of [30] that
introduces the IDA–PBC approach to regulate the position
of underactuated mechanical systems with total energy

H(q, p) =
1
2
p>M−1(q)p + V (q) (1)

whereq ∈ Rn, p ∈ Rn are the generalized position and
momenta, respectively,M = M> > 0 is the inertia matrix,
andV is the potential energy. If we assume that the system
has no natural damping, then the equations of motion can
be written as1

[
q̇
ṗ

]
=

[
0 In

−In 0

] [ ∇qH
∇pH

]
+

[
0

G(q)

]
u, (2)

whereu ∈ Rm andG ∈ Rn×m with rankG = m < n.
In IDA–PBC stabilization is achieved assigning to the
closed–loop a desired total energy function. The main re-
sult of [30] is contained in the proposition below, that we
prove for the sake of completeness.

Proposition 1 Assume there isMd(q) = M>
d (q) ∈ Rn×n

and a functionVd(q) that satisfy the PDEs

G⊥
{∇q(p>M−1p)−MdM

−1∇q(p>M−1
d p) +

2J2M
−1
d p

}
= 0 (3)

G⊥{∇V −MdM
−1∇Vd} = 0, (4)

for someJ2(q, p) = −J>2 (q, p) ∈ Rn×n and a full rank
left annihilatorG⊥(q) ∈ R(n−m)×m of G, i.e.,G⊥G = 0
and rank(G⊥) = n −m. Then, the system (2) in closed–
loop with the IDA–PBC

u = (G>G)−1G>(∇qH −MdM
−1∇qHd + J2M

−1
d p)−

−KvG>∇pHd, (5)

whereKv = K>
v > 0, takes the Hamiltonian form

[
q̇
ṗ

]
=

[
0 M−1Md

−MdM
−1 J2 −GKvG>

] [ ∇qHd

∇pHd

]
,

(6)
where the new total energy function is

Hd(q, p) =
1
2
p>M−1

d (q)p + Vd(q). (7)

Further, if Md is positive definite in a neighborhood ofq?

and
q? = arg min Vd(q), (8)

then (q?, 0) is a stable equilibrium point of (6) with
Lyapunov functionHd. This equilibrium is asymptot-
ically stable if it is locally detectable from the output
G>(q)M−1

d (q)p. An estimate of the domain of attraction
is given byΩc̄ whereΩc , {(q, p) ∈ R2n | Hd(q, p) < c}
and c̄ corresponds to the largest bounded sub-level set of
Hd.

1All vectors in the paper arecolumnvectors, even the gradient of a
scalar function:∇(·) = ∂

∂(·) —when clear from the context the subindex
in ∇ will be omitted. We will also assume that all functions are suffi-
ciently smooth and, whenever rank conditions are imposed, we assume
that they hold uniformly with respect to their arguments.



The main contribution of the present paper is the identi-
fication of a class of mechanical systems for which we
can explicitly solve the PDEs (3), (4). In spite of the
presence of the free matrixJ2, the kinetic energy PDE
(3) is a complicated nonlinear matrix PDE. In order to
solve it we propose in this paper tofix Md transforming
the PDE into analgebraic equationthat we will solve for
J2. Towards this end, we make first the assumption that
the inertia matrixM does not depend on the unactuated
coordinates, thus eliminating the termG⊥∇q(p>M−1p)
of (3). Second, introducing suitable parameterizations for
J2 andMd, we will prove that—for the case of underactu-
ation degree one—we haveenough degrees of freedomin
J2 to solve the algebraic equations. These developments
are presented in Section 3.

The potential energy PDE (4), even though linear, may also
be difficult to solve analytically. To be able to provide an
explicit solution we impose in Section 5 the additional as-
sumption that the unactuated component of the force in-
duced by the potential energy, that isG⊥∇V , is a function
of only oneof the actuated coordinates and makeMd a
function of this coordinate as well. Stability will be estab-
lished if we can assign a potential energy functionVd that
satisfies (8). See Point 2 in Section 1 and Remark 1 below.

Remark 1 It is clear that, for position regulation prob-
lems, our main objective is to shape the potential energy
function hence we could leaveMd = M and (4) becomes
G⊥(∇V −∇Vd) = 0. If the systems is underactuated our
ability to modify V in this way is obviously limited, see
Remark 4.3.18 of [39] and [23]. To overcome this obstacle
it was proposed in IDA–PBC [30] to change also the ki-
netic energy term.2 This is done through the modification
of M—that introduces the “coupling term"MdM

−1 in the
potential energy PDE. Our objective is then to find, among
the set of positive definiteMd that solve (3), one that will
allow us to shapeV . The key player in this intertwined
game isJ2, that we recall is free, thus providing degrees of
freedom to assignMd. See Remark 3 below and [28] for
additional discussions on the role ofJ2 applications be-
yond the realm of mechanics.

Remark 2 The class considered in the paper contains sev-
eral practically relevant examples. A particular case of this
class has been studied in [3], and a complete characteriza-
tion of all underactuation degree one mechanical systems
which are feedback–equivalent to it is given in [2].

Remark 3 In the light of some recent misleading nov-
elty claims reported in [40] we find necessary to clarify—
again—the history of the termJ2 and its role on stabiliza-
tion. Already in the first publication concerning IDA–PBC
[29] we indicated that, due precisely to the freedom in the

2To the best of the authors’ knowledge the first paper where shaping
the total energy for stabilization of mechanical systems was proposed is
[4], see also Chapter 3 of [31].

choice of this term (that is intrinsic to IDA–PBC), the class
of mechanical systems stabilized with IDA–PBCstrictly
containsthe class stabilized via the controlled Lagrangian
method of [12] or its extension [13]. It was shown that both
methods coincide for a particular choice ofJ2. This term
was given an interpretation in terms ofgyroscopic forces
in a Lagrangian framework for the first time in [11], with
a preliminary report widely distributed to the community
as early as October 2000. As openly recognized in the In-
troduction of [16], our work heavily inspired the modified
controlled lagrangian method reported in [16], and utilized
in [40]—that essentially mimics our derivations.

3 Solving the kinetic energy PDE
We now proceed to define the class of mechanical systems
for which we can explicitly solve (3). Toward this end we
introduce the following:

Assumption A.1 The system has underactuation degree
one, that is,m = n− 1.

Assumption A.2 There exists a full rank left annihilator
G⊥ of G such that

G⊥∇q(p>M−1p) = 0. (9)

Assumption A.2 essentially imposes thatM does not de-
pend on the unactuated coordinate. It is satisfied by many
well–known physical examples, for instance, the Ball and
Beam [20], the VTOL Aircraft [25] and the Acrobot [36].
It is easy to see that the assumption isalways satisfied, tak-

ing (with some minor loss of generality)G =
[

In−1

0 . . . 0

]

and introducing a partial feedback–linearization inner–
loop [36]. Indeed, after some simple calculations we see
that the partially feedback–linearized system takes the so–
called Spong’s Normal Form [19]:3

q̇ = p (10)

ṗ =

[
O

− 1
mnn(q)

ψu(q, p)

]
+

[
In−1

− 1
mnn(q)

m>
u (q)

]
u,

where we have partitioned the inertia matrix and defined
the functionψu ∈ R as

M =
[

? mu

m>
u mnn

]
, ψu , e>n (ṀM−1p +∇V )

with mu ∈ Rn−1, mnn ∈ R and en the n–th vector of
then–dimensional Euclidean basis. This system is in the
form (2) with a “new inertia matrix" equal identity, hence
satisfying Assumption A.2.
In the sequel we will impose some assumptions onM,V
andG to define a class of mechanical systems for which

3Since

[
O

− 1
mnn(q)

ψu(q, p)

]
is not necessarily a gradient vector

field a partially linearized system may not be in the form (2).



we can solve the PDEs. These assumptions can be con-
siderably simplified if we proceed from Spong’s Nor-
mal Form. It is well–known that, in contrast to PBC,
feedback–linearization is a fragile operation that requires
exact knowledge of the systems parameters and states to
ensure the “double integrator" structure. Therefore, we
prefer to present the assumptions on the original system
(2), stating as remarks their implication for the system in
Spong’s Normal Form.

3.1 An equivalent representation of the PDE
We find convenient to first express (3) in an alternative
equivalent form. For, we introduce a suitable parametriza-
tion of the free matrixJ2. It is clear from (3) thatJ2 should
be linear in p. We make now the important observation
that, without loss of generality (see Remark 4),J2 can be
parameterized in the form

J2 =




0 p̃>α1 p̃>α2 . . . p̃>αn−1

−p̃>α1 0 p̃>αn . . . p̃>α2n−3

...
...

...
. ..

...
−p̃>αn−1 −p̃>α2n−3 . . . 0




where the vector functionsαi(q) ∈ Rn, i =
1, . . . , no, no , n

2 (n − 1), are free parameters and we
have defined for notational convenience the (partial) coor-
dinate

p̃ , M−1
d p. (11)

Alternatively, we can write

J2 =
no∑

i=1

p̃>αiWi, (12)

with theWi ∈ Rn×n, i = 1, . . . , no, defined as follows.
First, we constructn2 matrices of dimensionn × n, that
we denoteF kl = {fkl

ij }, k, l ∈ {1, 2, . . . , n}, according
to the rule

fkl
ij =

{
1 if j > i, i = k andj = l
0 otherwise.

Notice that onlyno matrices are different from zero. Then,

we defineW kl , F kl − (
F kl

)>
. Finally, we set (in an

obvious way)

W1 = W 12,W2 = W 13, . . . , Wn = W 1n,

Wn+1 = W 23, . . . , Wno = W (n−1)n.

For instance, for the casen = 3, for which alsono = 3,
we get

W1 ,




0 1 0
−1 0 0
0 0 0


 , W2 ,




0 0 1
0 0 0
−1 0 0


 ,

W3 ,




0 0 0
0 0 1
0 −1 0


 .

Using this parameterization some simple calculations es-
tablish that the termG⊥J2 that appears in (3) becomes

G⊥(q)J2(q, p) = p̃>J (q)A>(q) (13)

where we defined

J ,
[
α1

... α2

... · · · ... αno

]
∈ Rn×no ,

which is afreematrix, and

A ,
[
W1

(
G⊥

)>
,W2

(
G⊥

)>
, . . . ,Wno

(
G⊥

)>]
∈ Rn×no .

(14)

Proposition 2 Under Assumptions A.1, A.2 the kinetic en-
ergy PDE (3) becomes

n∑

i=1

γi(q)
dMd

dqi
= −[J (q)A>(q) +A(q)J>(q)], (15)

where4

γ = col (γ1, . . . , γn) , M−1Md(G⊥)> ∈ Rn (16)

Remark 4 An n × n skew–symmetric matrix containsat
mostno non–zero different terms. Hence, the proposedJ2

contains all skew–symmetric matrices which are linear in
p̃, that is, all matrices of the form

∑n
i=1 Ωip̃i, Ωi = −Ω>i ,

and the parametrization is done without loss of generality
as claimed above.5

3.2 A parametrization of Md that solves the
PDE

In this section we present a parametrization of the desired
inertia matrix for which there exists aJ that sets to zero
the term in brackets of

p̃>[
n∑

i=1

γi
dMd

dqi
+ 2JA>]p̃ = 0, (17)

that we write here for ease of reference as

n∑

i=1

γi
dMd

dqi
= −2AJ>, (18)

recalling thatγi, as defined in (16), are functions ofMd.
It is important to underscore that the set ofMd that satis-
fies (18) is strictly contained in the set that satisfies (15)—
which, as stated in Proposition 2, characterizesall solu-
tions of (3). We decide to work with this smaller set be-
cause, as will be shown below, we can in this way give a
simple explicit expression forMd. Of course, all solutions
of (18) are solutions of (3).

4Notice that, under Assumption A.1,G⊥ is arow vector.
5The space of skew–symmetric matrices, usually denotedso(n), can

be alternatively defined noting thatso(n) is isomorphic toRn0 via the hat
operator̂· : Rn0 → so(n), and then use the basis{ê1, . . . , ên0}.



As explained in the introduction, we solve (18) as an alge-
braic equation in the unknownJ for agivenMd. Towards
this end, we note from (14) and skew–symmetry of the ma-
tricesWi that

G⊥A = 0. (19)

The equation above indicates thatA ∈ Im G which, in
view of (18), suggests to selectMd such thatdMd

dqi
∈ Im G

as well. The question on whether there will existsJ to
solve (18) will depend on the rank ofA as shown in the
following simple linear algebra lemma.

Lemma 1 Consider a matrixA ∈ Rn×no with no ≥ n,
rank A = n − 1, and such thatw>A = 0 for somew ∈
Rn. Then, for all vectorsx ∈ Rn such thatw>x = 0 there
exists a vectory ∈ Rno such thatx = Ay.6

In order to use Lemma 1 we now establish thatA satisfies
the required rank condition.

Lemma 2 For the matrixA defined in (14) we have

rank A = n− 1.

To present the main result of this section—a parametriza-
tion of Md such that (3) can be explicitly solved—we
require:

Assumption A.3 The input matrixG is function of a
single element ofq, sayqr, with r an integer taking values
in the set{1, . . . , n}.

Obviously, the assumption will be always satisfied if it
is possible to (via an input change of coordinates and
re–ordering of the variablesq) transform the input matrix

into G =
[

In−1

0 . . . 0

]
. On the other hand, referring to

Spong’s Normal Form (10), we see that the assumption is
satisfied for the partially–linearized system if the column
of M corresponding to the unactuated coordinate depends
only onqr.

Proposition 3 Let Assumptions A.1–A.3 be satisfied.
Under these conditions, for all desired (locally) positive
definite inertia matrices of the form

Md(qr) =
∫ qr

q?
r

G(µ)Ψ(µ)G>(µ)dµ + M0
d (20)

where the matrix functionΨ = Ψ> ∈ R(n−1)×(n−1) and
the constant matrixM0

d ∈ Rn×n, M0
d = (M0

d )> > 0, may
bearbitrarily chosen, there exists a matrixJ2 such that the
kinetic energy PDE (3) holds in a neighborhood ofq?

r .

6The proof of the lemma for the casen = 2, hencen0 = 1, follows
from basic plane geometry considerations and is omitted for brevity.

4 Solving the potential energy PDE
The potential energy PDE (4) can be written using (16) as

γ>(q)∇Vd = s(q) (21)

where, to simplify the notation, we have defined the scalar
function

s , G⊥∇V. (22)

This function, that is uniquely determined by the open–
loop system, plays a critical role in the stabilization prob-
lem and we propose to take a brief pause to analyze it. First
of all, notice that for all admissible equilibriāq, we have

s(q̄) = 0. (23)

This follows from the dynamic equations for momenta in
(2), whose right hand side evaluated forp = 0 becomes
−∇V + Gu. Secondly, the vector∇V contains the forces
induced by the potential energy, in particular,G⊥∇V are
those forces that cannot be (directly) affected by the con-
trol. Referring back to the original potential energy PDE
(4), we recall that the mechanism to shape the potential en-
ergy is through the introduction of the termMdM

−1. Since
we have imposed thatMd depends on a single coordinate
it is reasonable to require thats also depends only onqr, as
will be done below.
OnceMd is fixed, γ as given by (16) is also fixed, and
equation (21) is a linear PDE that may be solved using, for
instance, the techniques of [10]. See the examples worked
out in [30]. Since our interest in this paper is to give a
constructive solutionto the stabilization problem we make
two additional assumptions to be able to explicitly solve
(21).

Assumption A.4 The vectorγ and the functions, defined
in (16), (22), respectively, are functions ofqr only, with qr

as in Assumption A.3.

Assumption A.5γr(q?
r ) 6= 0.

Under Assumption A.3 and withMd defined by (20)
γ is a function ofqr if M is a function ofqr. Clearly,
for systems in Spong’s Normal Form, whereM = In,
Assumption A.4 will be satisfied ifψu does not depend on
p. Assumption A.5 is a generic condition that is imposed
to ensure that the PDE (21) admits a well–defined solution
in a neighborhood ofq?

r . This stems from the fact that the
γi are functions ofqr and, in view of (23),s vanishes at
q?
r .

We are in position to present our next result whose proof
follows from the equivalence of (4) and (21) and some di-
rect computations.

Proposition 4 Let Assumptions A.1–A.5 be satisfied and
Md be given by (20). Under these conditions,all solutions



of the potential energy PDE (4) are given by

Vd(q) =
∫ qr

0

s(µ)
γr(µ)

dµ + Φ(z(q)), (24)

with γ, s given in (16), (22), respectively, andz ∈ Rn,7

defined as

z(q) , q −
∫

0

qr γ(µ)
γr(µ)

dµ, (25)

with Φ anarbitrarydifferentiable function.

Remark 5 Propositions 3 and 4 characterize a set of
assignable energy functions of the form (1) in terms of the
triplet {Ψ,M0

d , Φ}. The construction proposed forMd en-
sures onlyMd(q?) > 0. To enlarge the domain of pos-
itivity of Md—and consequently enlarge the domain of
stability—suitable selections ofΨ andM0

d must be found.
The same comment applies to Assumption A.5 that should
be satisfied in some (quantifiable, and hopefully big) neigh-
borhood ofq?

r . We note that the functionssγr
and γi

γr
appear

explicitly in the control law (5) through the term∇Vd (im-
plicit in ∇Hd).

5 Main stabilization result
In the previous section we proposed a parametrization
of the assignable energy functions in terms of the triplet
{Ψ,M0

d , Φ}. Here we will impose some additional
constraints on these parameters to ensure asymptotic
stability of the closed–loop. As expected, for stability
we will require (besides positivity ofMd) assignment of
the desired minimum toVd, i.e., (8). To articulate this
condition we note first that the change of coordinates
q Ã z + qrer is a diffeomorphismthat preserves the
extrema—hence we analyze the potential energy function
in these new coordinates, see [30] for a discussion on this
issue. Now, from (24), and the fact thatΦ(z) is arbitrary, it
is clear that restrictions will only be imposed on the term∫

s
γr

. Recalling (23) and Assumption A.5 we note that this
function already has an extremum atq?

r . To ensure that it is
a minimum we verify that its second derivative, evaluated
at q?

r , is positive. Some simple calculations show that this
condition is equivalent to:

Assumption A.6γr(q?
r ) ds

dqr
(q?

r ) > 0.

The assumption has the following interpretation. First,
we recall from (22) thats represents the forces induced
by the potential energy function that are unactuated. Sec-
ond,q?

r corresponds to an equilibrium that will, typically,
be open–loop unstable therefore the open–loop potential
energy functionV will have amaximumat this point and
ds
dqr

(q?
r ) < 0. Finally, from (4) and (16) we see thatγr is

the element of the “coupling term",G⊥M−1Md, through

7z(q) is the, so–called, characteristic of the homogeneous part of the
PDE [10]. Notice thatz is ann–dimensional vector butzr = 0. We have
introduced this (awkward) definition for notational compactness.

which we can modify the (unactuated coordinates of the)
open–loop potential energy (see Remark 1). In summary,
Assumption A.6 reflects our ability to shape, for the pur-
poses of stabilization, the potential energy through modifi-
cation of the kinetic energy.
Interestingly, we will show in the proposition that the only
additional condition imposed forasymptoticstability is as
follows.

Assumption A.7 |G>M−1er(q?
r )| 6= 0.

Furthermore, for the particular case of quadraticΦ, a very
simpleexplicitexpression for the control law is given.

Proposition 5 Consider the underactuated mechanical
system (2) verifying Assumptions A.1–A.3. Assume there
exists matricesΨ andM0

d such that Assumptions A.4–A.6
hold withMd given by (20). Under these conditions, for all
differentiable functionsΦ the IDA–PBC (5) ensures that
the closed–loop dynamics is a Hamiltonian system of the
form (6) with total energy function (7), withVd defined in
(24). Moreover,(q?, 0) is a locally stableequilibrium with
Lyapunov functionHd(q, p) provided the rootqr = q?

r of
s(qr) is isolated, the functionz(q) satisfies

z(q?) = arg minΦ(z), (26)

and this minimum is isolated. It will beasymptoticallysta-
ble if Assumption A.7 holds.
Furthermore, if we select

Φ(z(q)) =
1
2

[z(q)− z(q?)]> P [z(q)− z(q?)]

with P = P> > 0, the control law is of the form

u = A1(q)PS(q − q?) +




p>A2(qr)p
...

p>An(qr)p


 + An+1(qr)−

(27)
−KvAn+2(qr)p

whereKv = K>
v > 0 is free,S ∈ R(n−1)×n is obtained

removing ther–th row from then–dimensional identity ma-
trix, for some matricesAi, i = 1, . . . , n + 2.

Remark 6 To quantify the domain of attraction, e.g.,
to obtain an (almost) global version of the asymptotic
stability claim, we need to rule out the existence of
limit cycles in the whole space(qr, ν) as well as stable
equilibria, different from the desired one. This can be done
reinforcing Assumption A.7 as follows.

Assumption A.7’ |G>M−1ers(qr)| = 0 ⇒ qr = q̄r, i.e.,
an equilibrium for the generalized coordinates

and imposing the following additional condition:



Assumption A.8 Fix a > 0 (possiblya = +∞). For all
pointsq̄r ∈ [q?

r − a , q?
r + a], q̄r 6= q?

r such thats(q̄r) = 0
we have that

γr(q̄r)
ds

dqr
(q̄r) < 0.

The latter ensures that all other equilibria correspond to
maximum or saddlepoints of the desired potential energy
function, and are henceforth unstable.

6 Implementation of the controller
via position feedback

In this section we prove that, using the recently introduced
method of Immersion and Invariance [6, 22], we can de-
sign a speed estimator that allows the implementation of
the proposed controllersmeasuring only positionfor the
following particular class of systems

q̇ = M−1(qr)p
ṗ = η(qr) + G(qr)u, (28)

that clearly satisfies Assumptions A.1–A.4 and contains the
examples considered [3]. To ensure stability we will im-
pose the (rather weak) additional assumption that the ma-
trix Ψ (that definesMd) is bounded.

Proposition 6 Consider the system (28) assuming, without
loss of generality, thatG is bounded.8 SelectboundedΨ
and M0

d in (20) such that Assumptions A.5 and A.6 hold.
Define theposition feedbackcontroller

u = A1(q)PS(q − q?) +




(p̂ + λq)>A2(p̂ + λq)
...

(p̂ + λq)>An(p̂ + λq)


 +

(29)

+An+1 −KvAn+2(p̂ + λq)

whereλ > 0, andp̂ is an estimate ofp− λq generated via

˙̂p = η + Gu− λM−1(p̂ + λq). (30)

Then there exists a neighborhood of the point(q?, 0,−λq?)
such that all trajectories of the closed–loop system starting
in this neighborhood are bounded and satisfy

lim
t→∞

(q(t), p(t), p̂(t)) = (q?, 0,−λq?).

Furthermore, if Assumption A.7 holds and the full state
feedback controller (27) ensures global asymptotic stabil-
ity then the neighborhood is the whole spaceR3n, thus
boundedness and convergence areglobal.

8This assumption is without loss of generality, because we can always
redefine the control signal with a scalar normalizing factor without affect-
ing the stabilizability properties.

7 Conclusions and future research
In this paper we have identified a class of underactuated
mechanical systems for which the IDA–PBC design
methodology gives a completeconstructivesolution to
the stabilization problem—without the need to solve any
PDE. The main assumptions made on the system are that it
has underactuation degree one and that, roughly speaking,
the dynamics that are not directly affected by the control,
e.g. “in Ker G", can be modified through the action of
one actuated coordinateqr. The underactuation degree
Assumption A.1 is needed to ensure there are enough
degrees of freedom in the free IDA–PBC parameterJ2

to solve the kinetic energy PDE as an algebraic equation.
Assumptions A.2 and A.3 ensure that we can construct the
solution choosingdMd

dqr
∈ Im G. Assumptions A.4 and

A.5, needed to solve the potential energy PDE, specify
the role of qr. Finally, Assumption A.6 measures our
ability to affect the potential energy function through the
modification ofMd.

We have also presented aposition feedback
implementation—with provable stability properties—
for a subclass of the class considered in the paper. (In
[2] a characterization of all mechanical systems that are
feedback–equivalent to this subclass is given in terms of
solvability of a set of PDEs with algebraic constraints.)
This class contains several practically interesting bench-
mark examples, some of which are studied in [3].

Besides ensuring asymptotic stability the IDA–PBC
methodology provides the designer with some degrees of
freedom to improve transient performance and robustness.
These degrees of freedom are given in terms of parame-
terized expressions for the assignable energy functions.
More precisely, the total energy function can be effectively
shaped via the selection of the scaling matrixΨ, the con-
stant matrixM0

d in the inertia matrix (20) and the choice of
the functionΦ in the potential energy (24). An additional
tuning parameter is the damping injection gainKv that
may be any positive definite (possibly state–dependent)
matrix.

For simplicity we have chosen in our simulations a
quadratic functionΦ for the potential energy, but motivated
by other considerations, e.g., input constraints or rate sat-
urations, we could have also taken other (logarithmic or
saturated) functions. An advantage of a quadratic function
is that the control law takes a very nice expression (27),
which consists of the sum of three types of terms that are
modulated by functions of the distinguished coordinateqr:

– (“proportional–like") linear terms on the additional
coordinate errorS(q − q?) that contribute to the po-
tential energy shaping;9

9We have shown with examples the importance of a suitable selection
of the relative weights (the matrixP ) of the configuration coordinates.



– (“derivative–like") linear terms inp due to the damp-
ing injection that enforce asymptotic stability;

– (“gyroscopic–like") quadratic terms inp that come
from the interconnection matrixJ2. These terms,
which serve to propagate the damping through the
well–known mechanism of feedback interconnection
of passive and strictly passive systems [28], are es-
sential for the solution of the present problem. See
Remark 3.

Current research is under way to extend the present work
in the following directions.

• In [24] we worked out two examples, the Acrobot and
the Furuta’s Pendulum, that do not satisfy Assump-
tions A.2 nor A.4. The term,G⊥∇q(p>M−1p) in-
troduces a quadratic term inMd in the kinetic en-
ergy PDE, but it can still be solved with a suitable
choice of J2. Similarly, even though Assumption
A.4 does not hold, we can solve the potential energy
PDE with a machinery specifically tailored for these
examples. Developing a general theory for a well–
identified class of systems containing these examples
is currently under investigation.

• In the proof of asymptotic stability in Proposition 5
we have established that in the residual setΩ the char-
acteristic of the potential energy PDE is constant. This
seems to be a geometric property of the PDEs that
needs to be further clarified. In particular, it would be
desirable to use it to simplify the proof and remove
the, rather awkward, Assumption A.7. (We point out
that this property ofz(q) holds for other classes of me-
chanical systems—for instance, the Ball–and–Beam
and the Acrobot systems which do not satisfy As-
sumptions A.2 nor A.4.)

• To relax Assumptions A.3 and A.4 we need to explore
the complete set of solutions forMd defined by (3), or
equivalently (15). In particular, it seems necessary to
makeMd function of all coordinates.

• Working out a general theory without Assumption A.1
seems a difficult task. On one hand, we cannot trans-
form the kinetic energy PDE into an algebraic equa-
tion. On the other hand, as indicated in [23], some
geometric obstacles that hamper our ability to shape
Vd may appear in this case.

• Comparison of the class studied here with the one
identified, via elegant geometric conditions, in [12].
See also [11]. Also, it would be interesting to explore
the connections with the recent work [19], where the
authors consider underactuation degree one mechani-
cal systems with a cyclic coordinate.

• The examples presented in the paper are transformed
into Spong’s Normal Form via partial feedback lin-
earization. It has been argued in this paper that this

operation is fragile so it would be interesting to avoid
it. This extension is also of interest if a true position
feedback controller on the actual system is to be real-
ized. Toward this end, the result of Section 6 should
be extended to a broader class of systems.

• The proposed controllers should be tested experimen-
tally and confronted with other existing schemes. The
outcome of this research will be reported elsewhere.
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