Stabilization of mechanical systems with underactuation degree one via

total energy shaping

“Romeo Ortega:*Alessandro Astolfi Jose Angel Acostéand?Arun D. Mahindrakar

1 Laboratoire des Signaux et Systémes
Supelec

Plateau du

Moulon

91192 Gif-sur-Yvette, France
ortega(mahindrakar)@lss.supelec.fr

1 Electrical Engineering Department
Imperial College
Exhibition Road, London
SW7 2BT, UK
a.astolfi@ic.ac.uk

Abstract

Interconnection and damping assignment passivity-based
control is a new controller design methodology devel-
oped for (asymptotic) stabilization of nonlinear systems
that does not rely on, sometimes unnatural and technique—
driven, linearization or decoupling procedures but instead
endows the closed—loop system with a Hamiltonian struc-
ture with a desired energy function—that qualifies as Lya-
punov function for the desired equilibrium. The assignable
energy functions are characterized by a set of partial differ-
ential equations that must be solved to determine the con-
trol law. We prove in this paper that for a class of mechani-
cal systems witlunderactuation degree orike partial dif-
ferential equations can bexplicitly solved Furthermore,

we introduce a suitable parametrization of assignable en-
ergy functions that provides the designer with a handle to
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1 Introduction

In [30] we introduced a controller design technique, called
interconnection and damping assignment passivity—based
control (IDA—PBC), that achieves stabilization for under-
actuated mechanical systems invoking the physically mo-
tivated principles ofenergy shapingand damping injec-
tion. IDA-PBC endows the closed—loop system with a
Hamiltonian structure where the kinetic and potential en-
ergy functions have some desirable features, a minimal re-
quirement being to have a minimum at the desired oper-
ating point to ensure its stability. Similar techniques have
been reported for general port—controlled Hamiltonian and
Lagrangian systems in [29, 39] and [31], respectively; see
also [12, 13, 14] for the case of Lagrangian mechanical
systems and [28] which contains an extensive list of refer-
ences on this topic. The success of these methods relies on
the possibility of solving a set of partial differential equa-

address transient performance and robustness issues. Fi-tions (PDESs) that identify the energy functions that can be

nally, we develop a speed estimator that allows the imple-
mentation ofposition—feedbackontrollers.

Note The present paper is an abridged version of the orig-
inal work [3] where several examples and all proofs, omit-
ted here, may be found.
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assigned to the closed—loop. The PDE associated to the ki-
netic energy defines the admissible closed-loop inertia ma-
trices and is nonlinear, while the PDE of assignable poten-
tial energy functions is linear. In [12] the authors identify a
series of conditions on the system and the assignable iner-
tia matrices such that the PDEs can be solved. Also, tech-
niques to solve the PDEs have been reported in [8, 11] and
some geometric aspects of the equations are investigated
in [23]. In [18] it is shown that the kinetic energy PDE
reduces to an ordinary differential equation (ODE) if the
system is of underactuation degree one, that is, if the dif-
ference between the number of degrees of freedom and the
number of control actions is one—see also [9] for a detailed



study of this case for the Controlled Lagrangian Method. In

whereq € R", p € R™ are the generalized position and

spite of all these developments the need to solve the PDEs momenta, respectively/ = M ' > 0is the inertia matrix,

remains the main stumbling block for a wider applicability

of these methods.

In this paper we are interested in the application of IDA—
PBC to mechanical systems with underactuation degree
one The main contributions of the paper are:

1. Identification of a class of underactuation degree one
mechanical systems for which the PDEs of IDA—PBC
can beexplicitly solved Roughly speaking, we as-
sume that the open—loop systems inertia matrix and
the force induced by the potential energy (on the unac-

tuated coordinate) are independent of the unactuated

coordinate.

2. Derivation of conditions to effectively assign a min-
imum to the energy function at the desired operating
point—providing in this way a complete constructive
procedure for stabilization. The conditions are given
in terms of singlealgebraic inequalitythat measures
our ability to influence, through the modification of
the inertia matrix, the unactuated component of the
force induced by potential energy.

3. Development, using the recently introduced method
of Immersion and Invariance [6, 22], of a speed esti-
mator that allows the implementation of the proposed
controllersmeasuring positioonly. To the best of our
knowledge, this is the first position—feedback solu-
tions reported for these systems—at this level of gen-
erality.

4. Last, but not least, the introduction of a suitable
parametrization of assignable energy functions—via
two free functionsand a gain matrix—giving the de-
signer the possibility to address transient performance
and robustness issues. In spite of their great practi-

cal importance these issues are rarely studied in the

literature. Indeed, most of the controllers reported
for this class of systems rely on the rather unnatural,
technigue—driven and fragile operations of lineariza-
tion and decoupling. Other existing schemes give very
little freedom to the designer to tune the controller—

basically only the selection of saturation and domina-
tion functions or the adjustment of high—gain injection

or damping.

2 The IDA-PBC method for (simple)
mechanical systems

In this section we briefly review the material of [30] that
introduces the IDA—PBC approach to regulate the position
of underactuated mechanical systems with total energy

H(g,p) = 2p" M~ (@)p + V(9)

- @

andV is the potential energy. If we assume that the system
has no natural damping, then the equations of motion can

be written a$
Al=05 S s+ o

whereu € R™ andG € R™ ™ with rankG = m < n.
In IDA-PBC stabilization is achieved assigning to the
closed—loop a desired total energy function. The main re-

sult of [30] is contained in the proposition below, that we
prove for the sake of completeness.

v, H

v, H } v @

Proposition 1 Assume there i81,(q) = M, (q) € R™*"
and a functionV;(q) that satisfy the PDEs

G* {vq(pTM_lp) - MdM_lvq(pTMcflp) +

2JoM;'p} =0 3)
GH{VV — MyM~'VV,} =0, (4)
for someJy(q,p) = —J5 (¢,p) € R™ ™ and a full rank

left annihilator G (¢q) € R("=™)x™ of G, i.e.,G*G =0
andrankG+) = n — m. Then, the system (2) in closed—
loop with the IDA-PBC

u=(G'G)'GT(V,H — MgM ™'V Hy + Jo M p)—

~K,G"V,Hy, (5)
whereK, = K,| > 0, takes the Hamiltonian form
q - 0 M_lMd Vqu
p | | —MgM~' J,—GK,GT VpHq |’
(6)
where the new total energy function is
L1
Ha(q,p) = 5p My (¢)p + Va(q)- (7)

2

Further, if M, is positive definite in a neighborhood ¢f
and

(8)

then (¢*,0) is a stable equilibrium point of (6) with
Lyapunov functionH,;. This equilibrium is asymptot-
ically stable if it is locally detectable from the output
GT(q)M; ' (q)p. An estimate of the domain of attraction
is given by, whereQ, = {(¢,p) € R*" | Hy(q,p) < c}
and ¢ corresponds to the largest bounded sub-level set of
Hy.

q* = arg min V(q),

LAll vectors in the paper areolumnvectors, even the gradient of a
scalar functionV ) = %—When clear from the context the subindex
in V will be omitted. We will also assume that all functions are suffi-
ciently smooth and, whenever rank conditions are imposed, we assume

that they hold uniformly with respect to their arguments.



The main contribution of the present paper is the identi-
fication of a class of mechanical systems for which we
can explicitly solve the PDEs (3), (4). In spite of the
presence of the free matriX;, the kinetic energy PDE
(3) is a complicated nonlinear matrix PDE. In order to
solve it we propose in this paper fix M, transforming
the PDE into aralgebraic equatiorthat we will solve for

Jo. Towards this end, we make first the assumption that
the inertia matrixd/ does not depend on the unactuated
coordinates, thus eliminating the ter@-V,(p" M ~1p)

of (3). Second, introducing suitable parameterizations for
Jo and M, we will prove that—for the case of underactu-
ation degree one—we haemough degrees of freedam

Jo to solve the algebraic equations. These developments
are presented in Section 3.

The potential energy PDE (4), even though linear, may also
be difficult to solve analytically. To be able to provide an
explicit solution we impose in Section 5 the additional as-
sumption that the unactuated component of the force in-
duced by the potential energy, thatis- VV, is a function

of only oneof the actuated coordinates and makg a
function of this coordinate as well. Stability will be estab-
lished if we can assign a potential energy functignthat
satisfies (8). See Point 2 in Section 1 and Remark 1 below.

Remark 1 It is clear that, for position regulation prob-
lems, our main objective is to shape the potential energy
function hence we could leav;, = M and (4) becomes
G+(VV = VV,) = 0. If the systems is underactuated our
ability to modify V' in this way is obviously limited, see
Remark 4.3.18 of [39] and [23]. To overcome this obstacle
it was proposed in IDA—PBC [30] to change also the ki-
netic energy term. This is done through the modification
of M—that introduces the “coupling tern®/; M ~! in the
potential energy PDE. Our objective is then to find, among
the set of positive definitd/; that solve (3), one that will
allow us to shapé/. The key player in this intertwined
game is/y, that we recall is free, thus providing degrees of
freedom to assigi/,;. See Remark 3 below and [28] for
additional discussions on the role @§ applications be-
yond the realm of mechanics.

Remark 2 The class considered in the paper contains sev-
eral practically relevant examples. A particular case of this
class has been studied in [3], and a complete characteriza-
tion of all underactuation degree one mechanical systems
which are feedback—equivalent to it is given in [2].

Remark 3 In the light of some recent misleading nov-
elty claims reported in [40] we find necessary to clarify—
again—the history of the ternf, and its role on stabiliza-
tion. Already in the first publication concerning IDA-PBC
[29] we indicated that, due precisely to the freedom in the

2To the best of the authors’ knowledge the first paper where shaping
the total energy for stabilization of mechanical systems was proposed is
[4], see also Chapter 3 of [31].

choice of this term (that is intrinsic to IDA—PBC), the class
of mechanical systems stabilized with IDA-PB&ictly
containsthe class stabilized via the controlled Lagrangian
method of [12] or its extension [13]. It was shown that both
methods coincide for a particular choice ff. This term
was given an interpretation in terms gyroscopic forces

in a Lagrangian framework for the first time in [11], with
a preliminary report widely distributed to the community
as early as October 2000. As openly recognized in the In-
troduction of [16], our work heavily inspired the modified
controlled lagrangian method reported in [16], and utilized
in [40]—that essentially mimics our derivations.

3 Solving the kinetic energy PDE

We now proceed to define the class of mechanical systems
for which we can explicitly solve (3). Toward this end we
introduce the following:

Assumption A.1 The system has underactuation degree
one, thatism =n — 1.

Assumption A.2 There exists a full rank left annihilator
G* of G such that

(9)

Assumption A.2 essentially imposes thet does not de-
pend on the unactuated coordinate. It is satisfied by many
well-known physical examples, for instance, the Ball and
Beam [20], the VTOL Aircraft [25] and the Acrobot [36].
Itis easy to see that the assumptioaligays satisfiettak-

In—l

0...0

and introducing a partial feedback-linearization inner—
loop [36]. Indeed, after some simple calculations we see
that the partially feedback—linearized system takes the so—
called Spong’s Normal Form [19]:

Infl
+| 1
Mo (@) 10

GV,(p"M'p) =o0.

ing (with some minor loss of generalityy =

q = (10)

p

N { (a)

where we have partitioned the inertia matrix and defined
the functiony,, € R as

O

_mni(q)wu(%p) "

j2 u,

*
T
my,

My
mnn

M = [ } . Yy 2el (MM lp+VV)

with m, € R*! m,, € R ande, the n-th vector of
the n—dimensional Euclidean basis. This system is in the
form (2) with a “new inertia matrix" equal identity, hence
satisfying Assumption A.2.

In the sequel we will impose some assumptionsién/
and G to define a class of mechanical systems for which

O

1
B 0)) Yy, (Q7 p)
field a partially linearized system may not be in the form (2).

3Since is not necessarily a gradient vector



we can solve the PDEs. These assumptions can be con- Using this parameterization some simple calculations es-

siderably simplified if we proceed from Spong’s Nor-
mal Form. It is well-known that, in contrast to PBC,
feedback-linearization is a fragile operation that requires

exact knowledge of the systems parameters and states to

ensure the “double integrator" structure. Therefore, we

prefer to present the assumptions on the original system

(2), stating as remarks their implication for the system in
Spong’s Normal Form.

3.1 An equivalent representation of the PDE

We find convenient to first express (3) in an alternative
equivalent form. For, we introduce a suitable parametriza-
tion of the free matrix/s. Itis clear from (3) that/; should

be linear in p. We make now the important observation
that, without loss of generality (see Remark 4),can be
parameterized in the form

0 ﬁTal ﬁTQfQ ﬁTan—l
—p o 0 Pl P -3
Jy =
—ﬁTOzn,1 _ﬁTQZn—3 e 0
where the vector functionsy;(¢) € R”, i =

1,..., N, Mo = 5(n — 1), are free parameters and we
have defined for notational convenience the (partial) coor-
dinate

pE M . (11)
Alternatively, we can write
Jy = ZﬁTO@Wi, (12)
=1
with the W; € R™*" 4§ =1,...,n,, defined as follows.

First, we construck? matrices of dimensiom x n, that
we denoteF* = {f*}, k1 € {1,2,...,n}, according
to the rule

ko_ )1 if j>i,i=kandj=1

91 0 otherwise.
Notice that onlyn, matrices are different from zero. Then,

we definelW* & pkl _ (F’“l)T. Finally, we set (in an
obvious way)

Wy =WR2 Wy =W133 ... W, =w'",
W = W2, W, =wh-bn,

For instance, for the case = 3, for which alson, = 3,
we get

W, &

|[>
o oo
o= o

tablish that the tern:.J, that appears in (3) becomes

G (q)J2(q,p) =5 T (@) AT (q)

where we defined

(13)

J |:Ck1;0425 fano] € R"X Mo,

which is afreematrix, and

AL () w64 W, (64) ] e R,

(14)
Proposition 2 Under Assumptions A.1, A.2 the kinetic en-
ergy PDE (3) becomes

n

> ()t = T @AT (@) + AT T (@), (1)
i=1 v

wheré
v =col (Y1,...,7n) 2 M*My(GH)T e R" (16)

Remark 4 An n x n skew—symmetric matrix contaira
mostn,, hon—zero different terms. Hence, the proposed
contains all skew—symmetric matrices which are linear in
p, thatis, all matrices of the forv"_, Q,p;, Q; = —Q],

and the parametrization is done without loss of generality
as claimed above.

3.2 A parametrization of M, that solves the
PDE
In this section we present a parametrization of the desired

inertia matrix for which there exists & that sets to zero
the term in brackets of

n

_ dM, _
P %Wfl +2JA'p=0, 17)
i=1 v
that we write here for ease of reference as
n
dM,
S vt = 2477, (18)
= dai

recalling thaty;, as defined in (16), are functions &1,.

It is important to underscore that the setMdf; that satis-
fies (18) is strictly contained in the set that satisfies (15)—
which, as stated in Proposition 2, characteriadssolu-
tions of (3). We decide to work with this smaller set be-
cause, as will be shown below, we can in this way give a
simple explicit expression fat/,. Of course, all solutions

of (18) are solutions of (3).

“Notice that, under Assumption A.G is arow vector

5The space of skew—symmetric matrices, usually denstéd), can
be alternatively defined noting the&(n) is isomorphic tdR™ via the hat
operator : R"0 — sdn), and then use the bag8y, ..., én, }.



As explained in the introduction, we solve (18) as an alge-
braic equation in the unknow for agivenM ;. Towards
this end, we note from (14) and skew—symmetry of the ma-
tricesW, that

G+*A=0. (19)
The equation above indicates thdt € Im G which, in
view of (18), suggests to seletf, such that% €elmG
as well. The question on whether there will exigfsto
solve (18) will depend on the rank of as shown in the
following simple linear algebra lemma.

Lemma 1 Consider a matrix4A € R"*" withn, > n,
rank A = n — 1, and such thaiv" A = 0 for somew €
R™. Then, for all vectors: € R™ such thatw "2 = 0 there
exists a vectoy € R" such thatr = Ay.°

In order to use Lemma 1 we now establish tiasatisfies
the required rank condition.

Lemma 2 For the matrix.A defined in (14) we have
rank A=mn—1.

To present the main result of this section—a parametriza-
tion of My such that (3) can be explicitly solved—we
require:

Assumption A.3 The input matrixG is function of a
single element of, saygq,, with r an integer taking values
inthe se{1,...,n}.

Obviously, the assumption will be always satisfied if it
is possible to (via an input change of coordinates and
re—ordering of the variablag transform the input matrix

H In—l
into G = 0.0
Spong’s Normal Form (10), we see that the assumption is
satisfied for the partially—linearized system if the column
of M corresponding to the unactuated coordinate depends
only ong,..

On the other hand, referring to

Proposition 3 Let Assumptions A.1-A.3 be satisfied.
Under these conditions, for all desired (locally) positive
definite inertia matrices of the form

" GO ()G () + MY

ar

My (Q’!‘) (20)

where the matrix functiolr = U7 ¢ R(»=1x(n=1) gnd

the constant matrin/$ € R"*", M? = (M9)" > 0, may

bearbitrarily chosen, there exists a matti such that the
kinetic energy PDE (3) holds in a neighborhoodypf

6The proof of the lemma for the case= 2, henceny = 1, follows
from basic plane geometry considerations and is omitted for brevity.

4 Solving the potential energy PDE
The potential energy PDE (4) can be written using (16) as

v (q)VVa = s(q) (21)

where, to simplify the notation, we have defined the scalar
function

s2GLVV. (22)

This function, that is uniquely determined by the open—
loop system, plays a critical role in the stabilization prob-
lem and we propose to take a brief pause to analyze it. First
of all, notice that for all admissible equilibria we have

s(q) = 0. (23)
This follows from the dynamic equations for momenta in
(2), whose right hand side evaluated for= 0 becomes
—VV + Gu. Secondly, the vectdv V' contains the forces
induced by the potential energy, in particulat-VV are
those forces that cannot be (directly) affected by the con-
trol. Referring back to the original potential energy PDE
(4), we recall that the mechanism to shape the potential en-
ergy is through the introduction of the tedhi; M —!. Since
we have imposed thdt/; depends on a single coordinate
it is reasonable to require thatlso depends only of)., as
will be done below.
Once My is fixed, v as given by (16) is also fixed, and
equation (21) is a linear PDE that may be solved using, for
instance, the techniques of [10]. See the examples worked
out in [30]. Since our interest in this paper is to give a
constructive solutioo the stabilization problem we make
two additional assumptions to be able to explicitly solve
(21).

Assumption A.4 The vectory and the functions, defined
in (16), (22), respectively, are functions @f only, with g,
as in Assumption A.3.

Assumption A.5v,.(g’) # 0.

Under Assumption A.3 and with\/; defined by (20)

~ is a function ofg, if M is a function ofg,.. Clearly,

for systems in Spong’s Normal Form, wheké¢ = I,
Assumption A.4 will be satisfied i, does not depend on
p. Assumption A.5 is a generic condition that is imposed
to ensure that the PDE (21) admits a well-defined solution
in a neighborhood of. This stems from the fact that the
~; are functions ofz,. and, in view of (23),s vanishes at

qr-

We are in position to present our next result whose proof
follows from the equivalence of (4) and (21) and some di-
rect computations.

Proposition 4 Let Assumptions A.1-A.5 be satisfied and
M, be given by (20). Under these conditioa#i,solutions



of the potential energy PDE (4) are given by
ar g
Va(q) :/ W)
0

¥ (1)
with ~, s given in (16), (22), respectively, and e R",’

defined as
A i ’Y(M)
z(q) = ¢ —/ dp,
( ) 0 'YT(:“)

with ® an arbitrarydifferentiable function.

dp+ @(2(q)), (24)

(25)

Remark 5 Propositions 3 and 4 characterize a set of
assignable energy functions of the form (1) in terms of the
triplet {¥, M2, ®}. The construction proposed far,; en-
sures onlyM,(¢*) > 0. To enlarge the domain of pos-
itivity of AMy;—and consequently enlarge the domain of
stability—suitable selections af and A/ must be found.
The same comment applies to Assumption A.5 that should
be satisfied in some (quantifiable, and hopefully big) neigh-
borhood ofg. We note that the funcnon,y% and ;* appear
explicitly in the control law (5) through the ter®iV; (im-
plicitin V Hy).

5 Main stabilization result

In the previous section we proposed a parametrization
of the assignable energy functions in terms of the triplet
{W, MY, ®}. Here we will impose some additional

which we can modify the (unactuated coordinates of the)
open-loop potential energy (see Remark 1). In summary,
Assumption A.6 reflects our ability to shape, for the pur-
poses of stabilization, the potential energy through modifi-
cation of the kinetic energy.

Interestingly, we will show in the propaosition that the only
additional condition imposed fasymptoticstability is as
follows.

Assumption A.7 |G T M~te,.(q*)| # 0.

Furthermore, for the particular case of quadrédtja very
simpleexplicitexpression for the control law is given.

Proposition 5 Consider the underactuated mechanical
system (2) verifying Assumptions A.1-A.3. Assume there
exists matrices and M7 such that Assumptions A.4-A.6
hold with M, given by (20). Under these conditions, for all
differentiable functiongp the IDA—-PBC (5) ensures that
the closed-loop dynamics is a Hamiltonian system of the
form (6) with total energy function (7), with; defined in
(24). Moreover(q*, 0) is alocally stableequilibrium with
Lyapunov functiorf (g, p) provided the rooy, = ¢ of
s(g,) is isolated, the function(q) satisfies

2(q*) = arg min ®(2), (26)

and this minimum is isolated. It will beessymptoticallysta-

constraints on these parameters to ensure asymptotic ble if Assumption A.7 holds.

stability of the closed—loop. As expected, for stability
we will require (besides positivity ofi/;) assignment of
the desired minimum td/;, i.e., (8). To articulate this
condition we note first that the change of coordinates
q ~ z + gre. is a diffeomorphismthat preserves the
extrema—hence we analyze the potential energy function
in these new coordinates, see [30] for a discussion on this
issue. Now, from (24), and the fact thitz) is arbitrary, it

is clear that restrictions will only be imposed on the term
f . Recalling (23) and Assumption A.5 we note that this
functlon already has an extremungat To ensure that it is

a minimum we verify that its second derivative, evaluated
atq?, is positive. Some simple calculations show that this
condition is equivalent to:

Assumption A. 6%(%) ~(gy) > 0.

The assumption has the following interpretation. First,
we recall from (22) that represents the forces induced
by the potential energy function that are unactuated. Sec-
ond, ¢x corresponds to an equilibrium that will, typically,
be open—loop unstable therefore the open—loop potential
energy functionl” will have amaximumat this point and

= (gr) < 0. Finally, from (4) and (16) we see thaf is
the element of the “coupling termG-M ~1 M, through

"2(q) is the, so—called, characteristic of the homogeneous part of the
PDE [10]. Notice that is ann—dimensional vector but. = 0. We have
introduced this (awkward) definition for notational compactness.

Furthermore, if we select

3(=(q)) = 3 2(a) — =) P[2(a) ~ 2(a")]
with P = PT > 0, the control law is of the form
p" Ax(qr)p
u:Al(Q)PS(q_q*)+ +An+1(qr)_
pTAn(qT)p
(27)
_KvAn+2 (QT)p

whereK,, = K| > 0is free,S € R("~1)*" is obtained
removing the—th row from the:—dimensional identity ma-
trix, for some matricesl;, i =1,...,n+ 2.

Remark 6 To quantify the domain of attraction, e.g.,
to obtain an (almost) global version of the asymptotic
stability claim, we need to rule out the existence of
limit cycles in the whole spacéy,,v) as well as stable
equilibria, different from the desired one. This can be done
reinforcing Assumption A.7 as follows.

Assumption A.7' |GT M~ e, s(q.)| = 0 = ¢ = G, i.€.,
an equilibrium for the generalized coordinates

and imposing the following additional condition:



Assumption A.8 Fix a > 0 (possiblya = +o0). For all
pointsg, € [¢r —a, q; +al, - # q; such that(g.) =0
we have that

ds

dgy

¥ (@r) (g-) <O0.

The latter ensures that all other equilibria correspond to
maximum or saddlpoints of the desired potential energy
function, and are henceforth unstable.

6 Implementation of the controller

via position feedback

In this section we prove that, using the recently introduced
method of Immersion and Invariance [6, 22], we can de-
sign a speed estimator that allows the implementation of
the proposed controllenmeasuring only positioffior the
following particular class of systems

M_l(qr)p

q —
) n(qr) + G(gr)u,

(28)

that clearly satisfies Assumptions A.1-A.4 and contains the
examples considered [3]. To ensure stability we will im-
pose the (rather weak) additional assumption that the ma-
trix ¥ (that defines\/,) is bounded

Proposition 6 Consider the system (28) assuming, without
loss of generality, tha€ is bounded Selectbounded¥
and MY in (20) such that Assumptions A.5 and A.6 hold.
Define theposition feedbackontroller

B+ Aq) " A2(p+ A\g)

u=A:1(¢)PS(q—q") + +

(p+ /\Q)TAH (D + Aq)
(29)

+An+1 — K11A7l+2 (ﬁ + AQ)

where > 0, andp is an estimate gf — A\q generated via

p=n+Gu—AM"'(p+ \g). (30)
Then there exists a neighborhood of the péirit 0, —\g*)
such that all trajectories of the closed—loop system starting
in this neighborhood are bounded and satisfy

Jim (q(), p(t), B(1)) = (¢",0,=Aq").
Furthermore, if Assumption A.7 holds and the full state
feedback controller (27) ensures global asymptotic stabil-
ity then the neighborhood is the whole spaR#&®, thus
boundedness and convergence gi@bal

8This assumption is without loss of generality, because we can always
redefine the control signal with a scalar normalizing factor without affect-
ing the stabilizability properties.

7 Conclusions and future research

In this paper we have identified a class of underactuated
mechanical systems for which the IDA-PBC design
methodology gives a completeonstructivesolution to

the stabilization problem—uwithout the need to solve any
PDE. The main assumptions made on the system are that it
has underactuation degree one and that, roughly speaking,
the dynamics that are not directly affected by the control,
e.g. “in Ker G", can be modified through the action of
one actuated coordinaig.. The underactuation degree
Assumption A.1 is needed to ensure there are enough
degrees of freedom in the free IDA—-PBC paramefer

to solve the kinetic energy PDE as an algebraic equation.
Assumptions A.2 and A.3 ensure that we can construct the
solution choosingZ¥< € Im G. Assumptions A.4 and
A.5, needed to solve the potential energy PDE, specify
the role ofg,. Finally, Assumption A.6 measures our
ability to affect the potential energy function through the
modification of M.

We have also presented aposition feedback
implementation—with provable stability properties—
for a subclass of the class considered in the paper. (In
[2] a characterization of all mechanical systems that are
feedback—equivalent to this subclass is given in terms of
solvability of a set of PDEs with algebraic constraints.)
This class contains several practically interesting bench-
mark examples, some of which are studied in [3].

Besides ensuring asymptotic stability the IDA-PBC
methodology provides the designer with some degrees of
freedom to improve transient performance and robustness.
These degrees of freedom are given in terms of parame-
terized expressions for the assignable energy functions.
More precisely, the total energy function can be effectively
shaped via the selection of the scaling matbixthe con-
stant matrix)/9 in the inertia matrix (20) and the choice of
the function® in the potential energy (24). An additional
tuning parameter is the damping injection gdif that
may be any positive definite (possibly state—dependent)
matrix.

For simplicity we have chosen in our simulations a
quadratic functiorp for the potential energy, but motivated
by other considerations, e.g., input constraints or rate sat-
urations, we could have also taken other (logarithmic or
saturated) functions. An advantage of a quadratic function
is that the control law takes a very nice expression (27),
which consists of the sum of three types of terms that are
modulated by functions of the distinguished coordingte

— (“proportional-like") linear terms on the additional
coordinate erroiS(q — ¢*) that contribute to the po-
tential energy shaping;

9We have shown with examples the importance of a suitable selection
of the relative weights (the matriR) of the configuration coordinates.



— (“derivative—like") linear terms ip due to the damp-

ing injection that enforce asymptotic stability;

— (“gyroscopic-like") quadratic terms ip that come

from the interconnection matri¥,. These terms,
which serve to propagate the damping through the
well-known mechanism of feedback interconnection
of passive and strictly passive systems [28], are es-
sential for the solution of the present problem. See
Remark 3.

operation is fragile so it would be interesting to avoid
it. This extension is also of interest if a true position
feedback controller on the actual system is to be real-
ized. Toward this end, the result of Section 6 should
be extended to a broader class of systems.

e The proposed controllers should be tested experimen-

tally and confronted with other existing schemes. The
outcome of this research will be reported elsewhere.
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